
rampedpyrox Documentation
Release 0.1.2

Jordon D. Hemingway

May 15, 2017

Contents

1 Package Information 3

2 Bug Reports 5

3 How to Cite 7

4 Package features 9
4.1 Future Additions . 9

5 License 11

6 Table of contents 13
6.1 Comprehensive Walkthrough . 13
6.2 Package Reference Documentation . 31

7 Indices and tables 55

i

ii

rampedpyrox Documentation, Release 0.1.2

rampedpyrox is a Python package for analyzing experimental kinetic data and accompanying chemical/isotope
compositional information. rampedpyrox is especially suited for comparing kinetic and isotope results from
ramped-temperature instruments such as Ramped PyrOx, RockEval, pyrolysis gc (pyGC), thermogravimitry (TGA),
etc. This package converts measured time-series data into rate/activation energy distributions using a selection of
reactive continuum models, including the Distributed Activation Energy Model (DAEM) for non-isothermal data. Ad-
ditionally, this package calculates the range of rate/activation energy values associated with each isotope “fraction”
and performs necessary isotope corrections (blank, mass balance, kinetic fractionation).

Contents 1

rampedpyrox Documentation, Release 0.1.2

2 Contents

CHAPTER 1

Package Information

Authors Jordon D. Hemingway (jordon_hemingway@fas.harvard.edu)

Version 0.1.2

Release 26 January 2017

License GNU GPL v3 (or greater)

url http://github.com/FluvialSeds/rampedpyrox

3

mailto:jordon_hemingway@fas.harvard.edu
http://github.com/FluvialSeds/rampedpyrox

rampedpyrox Documentation, Release 0.1.2

4 Chapter 1. Package Information

CHAPTER 2

Bug Reports

This software is still in active deveopment. Please report any bugs directly to me.

5

rampedpyrox Documentation, Release 0.1.2

6 Chapter 2. Bug Reports

CHAPTER 3

How to Cite

When analyzing data with rampedpyrox to be used in a peer-reviewed journal, please cite this package as:

• J.D. Hemingway. rampedpyrox: open-source tools for thermoanalytical data analysis, 2016-, http://github.com/
FluvialSeds/rampedpyrox [online; accessed 2017-05-15]

Additionally, please cite the following peer-reviewed manuscript describing the deveopment of the package and
Ramped PyrOx data treatment:

• J.D. Hemingway et al. (in prep) An inverse model for relating organic carbon thermal reactivity and isotope
composition using Ramped PyrOx.

If using Ramped PyrOx data generated by the NOSAMS instrument, the following manuscript contains relevant infor-
mation regarding blank carbon composition, isotope mass balance, and the magnitude of the kinetic isotope effect:

• J.D. Hemingway et al. (2017) Assessing the blank carbon contribution, isotope mass balance, and kinetic isotope
fractionation of the ramped pyrolysis/oxidation instrument at NOSAMS. Radiocarbon, in press.

7

http://github.com/FluvialSeds/rampedpyrox
http://github.com/FluvialSeds/rampedpyrox

rampedpyrox Documentation, Release 0.1.2

8 Chapter 3. How to Cite

CHAPTER 4

Package features

rampedpyrox currently contains the following features relevant to non-isothermal kinetic analysis:

• Stores and plots thermogram data

• Performs first-order DAEM inverse model to estimate activation energy distributions, p0(E)

– Regularizes (“smoothes”) p0(E) using Tikhonov Regularization

* Automated or user-defined regularization value

• Calculates subset of p0(E) contained in each RPO collection fraction

– Automatically blank-corrects inputted isotope values using any known blank carbon composition

– Corrects measured 13C/12C ratios for the kinetic isotope effect (KIE) during heating

• Calculates and stores model performance metrics and goodness of fit statistics

• Generates plots of thermograms, p0(E), and E vs. isotope values for each RPO fraction

• Allows for forward-modeling of any arbitrary time-temperature history, e.g. to determine the decomposition
rates and isotope fractionation during geologic organic carbon matruation

Future Additions

Future versions of rampedpyrox will aim to include:

• Better support for isothermal experimental conditions

• Non-first-order kinetic models

9

rampedpyrox Documentation, Release 0.1.2

10 Chapter 4. Package features

CHAPTER 5

License

This product is licensed under the GNU GPL license, version 3 or greater.

11

rampedpyrox Documentation, Release 0.1.2

12 Chapter 5. License

CHAPTER 6

Table of contents

Comprehensive Walkthrough

The following examples should form a comprehensive walkthough of downloading the package, getting thermogram
data into the right form for importing, running the DAEM inverse model to generate an activation energy (E) proba-
bility density function [p0(E)], determining the E range contained in each RPO fraction, correcting isotope values for
blank and kinetic fractionation, and generating all necessary plots and tables for data analysis.

For detailed information on class attributes, methods, and parameters, consult the Package Reference Documentation
or use the help() command from within Python.

Quick guide

Basic runthrough:

#import modules
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import rampedpyrox as rp

#generate string to data
tg_data = '/folder_containing_data/tg_data.csv'
iso_data = '/folder_containing_data/iso_data.csv'

#make the thermogram instance
tg = rp.RpoThermogram.from_csv(

tg_data,
bl_subtract = True,
nt = 250)

#generate the DAEM
daem = rp.Daem.from_timedata(

13

rampedpyrox Documentation, Release 0.1.2

tg,
log10k0 = 10, #assume a constant value of 10
E_max = 350,
E_min = 50,
nE = 400)

#run the inverse model to generate an energy complex
ec = rp.EnergyComplex.inverse_model(

daem,
tg,
omega = 'auto') #calculates best-fit omega

#forward-model back onto the thermogram
tg.forward_model(daem, ec)

#calculate isotope results
ri = rp.RpoIsotopes.from_csv(

iso_data,
daem,
ec,
blk_corr = True, #uses values for NOSAMS instrument
bulk_d13C_true = [-24.9, 0.1], #true d13C value
mass_err = 0.01,
DE = 0.0018) #value from Hemingway et al., 2017

#compare corrected isotopes and E values
print(ri.ri_corr_info)

Downloading the package

Using the pip package manager

rampedpyrox and the associated dependencies can be downloaded directly from the command line using pip:

$ pip install rampedpyrox

You can check that your installed version is up to date with the latest release by doing:

$ pip freeze

Downloading from source

Alternatively, rampedpyrox source code can be downloaded directly from my github repo. Or, if you have git
installed:

$ git clone git://github.com/FluvialSeds/rampedpyrox.git

And keep up-to-date with the latest version by doing:

$ git pull

from within the rampedpyrox directory.

14 Chapter 6. Table of contents

http://github.com/FluvialSeds/rampedpyrox

rampedpyrox Documentation, Release 0.1.2

Dependencies

The following packages are required to run rampedpyrox:

• python >= 2.7, including Python 3.x

• matplotlib >= 1.5.2

• numpy >= 1.11.1

• pandas >= 0.18.1

• scipy >= 0.18.0

If downloading using pip, these dependencies (except python) are installed automatically.

Optional Dependencies

The following packages are not required but are highly recommended:

• ipython >= 4.1.1

Additionally, if you are new to the Python environment or programming using the command line, consider using a
Python integrated development environment (IDE) such as:

• wingware

• Enthought Canopy

• Anaconda

• Spyder

Python IDEs provide a “MATLAB-like” environment as well as package management. This option should look
familiar for users coming from a MATLAB or RStudio background.

Getting data in the right format

Importing thermogram data

For thermogram data, this package requires that the file is in .csv format, that the first column is date_time index in an
hh:mm:ss AM/PM format, and that the file contains ‘CO2_scaled’ and ‘temp’ columns1. For example:

date_time temp CO2_scaled
10:24:20 AM 100.05025 4.6
10:24:21 AM 100.09912 5.3
10:24:22 AM 100.11413 5.1
10:24:23 AM 100.22759 4.9

Once the file is in this format, generate a string pointing to it in python like this:

#create string of path to data
tg_data = '/path_to_folder_containing_data/tg_data.csv'

1 Note: If analyzing samples run at NOSAMS, all other columns in the tg_data file generated by LabView are not used and can be deleted or
given an arbitrary name.

6.1. Comprehensive Walkthrough 15

http://www.python.org
http://matplotlib.org
http://www.numpy.org
http://pandas.pydata.org
http://www.scipy.org
http://www.ipython.org
http://wingware.com
https://store.enthought.com/downloads/#default
https://www.continuum.io/downloads
https://github.com/spyder-ide/spyder

rampedpyrox Documentation, Release 0.1.2

Importing isotope data

If you are importing isotope data, this package requires that the file is in .csv format and that the first two rows
correspond to the starting time of the experiment and the initial trapping time of fraction 1, respectively. Additionally,
the file must contain a ‘fraction’ column and isotope/mass columns must have ug_frac, d13C, d13C_std, Fm, and
Fm_std headers. For example:

date_time fraction ug_frac d13C d13C_std Fm Fm_std
10:24:20 AM -1 0 0 0 0 0
10:45:10 AM 0 0 0 0 0 0
11:32:55 AM 1 69.05 -30.5 0.1 0.8874 0.0034
11:58:23 AM 2 105.81 -29.0 0.1 0.7945 0.0022

Here, the ug_frac column is composed of manometrically determined masses rather than those determined by the
infrared gas analyzer (IRGA, i.e. photometric). Important: The date_time value for fraction ‘-1’ must be the same as
the date_time value for the first row in the tg_data thermogram file and the value for fraction ‘0’ must the initial time
when trapping for fraction 1 began.

Once the file is in this format, generate a string pointing to it in python like this:

#create string of path to data
iso_data = '/path_to_folder_containing_data/iso_data.csv'

Making a TimeData instance (the Thermogram)

Once the tg_data string been defined, you are ready to import the package and generate an rp.RpoThermogram
instance containing the thermogram data. rp.RpoThermogram is a subclass of rp.TimeData – broadly speaking,
this handles any object that contains measured time-series data. It is important to keep in mind that your thermogram
will be down-sampled to nt points in order to smooth out high-frequency noise and to keep Laplace transform matrices
to a manageable size for inversion (see Setting-up the model below). Additionally, because the inversion model is
sensitive to boundary conditions at the beginning and end of the run, there is an option when generating the thermogram
instance to ensure that the baseline has been subtracted. Note that temperature and ppm CO2 uncertainty is not inputted
– any noise is dealt with during regularization (see Regularizing the inversion below):

#load modules
import rampedpyrox as rp

#number of timepoints to be used in down-sampled thermogram
nt = 250

tg = rp.RpoThermogram.from_csv(
data,
bl_subtract = True, #subtract baseline
nt = nt)

Plot the thermogram and the fraction of carbon remaining against temperature2 or time:

#load modules
import matplotlib.pyplot as plt

#make a figure
fig, ax = plt.subplots(2, 2,

figsize = (8,8),
sharex = 'col')

2 Note: For the NOSAMS Ramped PyrOx instrument, plotting against temperature results in a noisy thermogram due to the variability in the
ramp rate, dT/dt.

16 Chapter 6. Table of contents

rampedpyrox Documentation, Release 0.1.2

#plot results
ax[0, 0] = tg.plot(

ax = ax[0, 0],
xaxis = 'time',
yaxis = 'rate')

ax[0, 1] = tg.plot(
ax = ax[0, 1],
xaxis = 'temp',
yaxis = 'rate')

ax[1, 0] = tg.plot(
ax = ax[1, 0],
xaxis = 'time',
yaxis = 'fraction')

ax[1, 1] = tg.plot(
ax = ax[1, 1],
xaxis = 'temp',
yaxis = 'fraction')

#adjust the axes
ax[0, 0].set_ylim([0, 0.00032])
ax[0, 1].set_ylim([0, 0.0035])
ax[1, 1].set_xlim([375, 1200])

plt.tight_layout()

Resulting plots look like this:

6.1. Comprehensive Walkthrough 17

rampedpyrox Documentation, Release 0.1.2

Additionally, thermogram summary info are stored in the tg_info attribute, which can be printed or saved to a .csv file:

#print in the terminal
print(tg.tg_info)

#save to csv
tg.tg_info.to_csv('file_name.csv')

This will create a table similar to:

18 Chapter 6. Table of contents

rampedpyrox Documentation, Release 0.1.2

t_max (s) 6.95e+03
t_mean (s) 5.33e+03
t_std (s) 1.93e+03
T_max (K) 9.36e+02
T_mean (K) 8.00e+02
T_std (K) 1.61e+02
max_rate (frac/s) 2.43e-04
max_rate (frac/K) 2.87e-04

Setting-up the model

The inversion transform

Once the rp.RpoThermogram instance has been created, you are ready to run the inversion model and gener-
ate a regularized and discretized probability density function (pdf) of the rate/activation energy distribution, p. For
non-isothermal thermogram data, this is done using a first-order Distributed Activation Energy Model (DAEM)3 by
generating an rp.Daem instance containing the proper transform matrix, A, to translate between time and activation
energy space4. This matrix contains all the assumptions that go into building the DAEM inverse model as well as all
of the information pertaining to experimental conditions (e.g. ramp rate)5. Importantly, the transform matrix does not
contain any information about the sample itself – it is simply the model “design” – and a single rp.Daem instance
can be used for multiple samples provided they were analyzed under identical experimental conditions (however, this
is not recommended, as subtle differences in experimental conditions such as ramp rate could exist).

One critical user input for the DAEM is the Arrhenius pre-exponential factor, k:sub:‘0‘ (inputted here in log10 form).
Because there is much discussion in the literature over the constancy and best choice of this parameter (the so-called
‘kinetic compensation effect’ or KCE6), this package allows log:sub:‘10‘k:sub:‘0‘ to be inputted as a constant, an
array, or a function of E.

For convenience, you can create any model directly from either time data or rate data, rather than manually inputting
time, temperature, and rate vectors. Here, I create a DAEM using the thermogram defined above and allow E to range
from 50 to 400 kJ/mol:

#define log10k0, assume constant value of 10
log10k0 = 10 #value advocated in Hemingway et al. (in prep)

#define E range (in kJ/mol)
E_min = 50
E_max = 400
nE = 400 #number of points in the vector

#create the DAEM instance
daem = rp.Daem.from_timedata(

tg,
log10k0 = log10k0,
E_max = E_max,
E_min = E_min,
nE = nE)

3 Braun and Burnham (1999), Energy & Fuels, 13(1), 1-22 provides a comprehensive review of the kinetic theory, mathematical derivation, and
forward-model implementation of the DAEM.

4 See Forney and Rothman (2012), Biogeosciences, 9, 3601-3612 for information on building and regularizing a Laplace transform matrix to be
used to solve the inverse model using the L-curve method.

5 See Hemingway et al. (in prep) for a step-by-step mathematical derivation of the DAEM and the inverse solution applied here.
6 See White et al. (2011), J. Anal. Appl. Pyrolysis, 91, 1-33 for a review on the KCE and choice of log:sub:‘10‘k:sub:‘0‘.

6.1. Comprehensive Walkthrough 19

rampedpyrox Documentation, Release 0.1.2

Regularizing the inversion

Once the model has been created, you must tell the package how much to ‘smooth’ the resulting p0(E) distribution.
This is done by choosing an omega value to be used as a smoothness weighting factor for Tikhonov regularization7.
Higher values of omega increase how much emphasis is placed on minimizing changes in the first derivative at the
expense of a better fit to the measured data, which includes analytical uncertainty. Rractically speaking, regularization
aims to “fit the data while ignoring the noise.” This package can calculate a best-fit omega value using the L-curve
method5.

Here, I calculate and plot L curve for the thermogram and model defined above:

#make a figure
fig,ax = plt.subplots(1, 1,

figsize = (5, 5))

om_best, ax = daem.calc_L_curve(
tg,
ax = ax,
plot = True)

plt.tight_layout()

Resulting L-curve plot looks like this, here with a calculated best-fit omega value of 0.484:

7 See Hansen (1994), Numerical Algorithms, 6, 1-35 for a discussion on Tikhonov regularization.

20 Chapter 6. Table of contents

rampedpyrox Documentation, Release 0.1.2

Making a RateData instance (the inversion results)

After creating the rp.Daem instance and deciding on a value for omega, you are ready to invert the thermogram
and generate an Activation Energy Complex (EC). An EC is a subclass of the more general rp.RateData instance
which, broadly speaking, contains all rate and/or activation energy information. That is, the EC contains an estimate of
the underlying E distribution, p0(E), that is intrinsic to a particular sample for a particular degradation experiment type
(e.g. combustion, uv oxidation, enzymatic degradation, etc.). A fundamental facet of this model is the realization that
degradation of any given sample can be described by a distribution of reactivities as described by activation energy.

Here I create an energy complex with omega set to ‘auto’:

ec = rp.EnergyComplex.inverse_model(
daem,
tg,
omega = 'auto')

I then plot the resulting deconvolved energy complex:

#make a figure
fig,ax = plt.subplots(1, 1,

figsize = (5,5))

#plot results
ax = ec.plot(ax = ax)

ax.set_ylim([0, 0.022])
plt.tight_layout()

Resulting p:sub: 0(E) looks like this:

6.1. Comprehensive Walkthrough 21

rampedpyrox Documentation, Release 0.1.2

EnergyComplex summary info are stored in the ec_info attribute, which can be printed or saved to a .csv file:

#print in the terminal
print(ec.ec_info)

#save to csv
ec.ec_info.to_csv('file_name.csv')

This will create a table similar to:

E_max (kJ/mol) 230.45
E_mean (kJ/mol) 194.40
E_std (kJ/mol) 39.58
p0(E)_max 0.02

Additionally, goodness of fit residual RMSE and roughness values can be viewed:

#residual rmse for the model fit
ec.resid

#regularization roughness norm
ec.rgh

22 Chapter 6. Table of contents

rampedpyrox Documentation, Release 0.1.2

Forward modeling the estimated thermogram

Once the rp.EnergyComplex instance has been created, you can forward-model the predicted thermogram and
compare with measured data using the forward_model method of any rp.TimeData instance. For example:

tg.forward_model(daem, ec)

The thermogram is now updated with modeled data and can be plotted:

#make a figure
fig, ax = plt.subplots(2, 2,

figsize = (8,8),
sharex = 'col')

#plot results
ax[0, 0] = tg.plot(

ax = ax[0, 0],
xaxis = 'time',
yaxis = 'rate')

ax[0, 1] = tg.plot(
ax = ax[0, 1],
xaxis = 'temp',
yaxis = 'rate')

ax[1, 0] = tg.plot(
ax = ax[1, 0],
xaxis = 'time',
yaxis = 'fraction')

ax[1, 1] = tg.plot(
ax = ax[1, 1],
xaxis = 'temp',
yaxis = 'fraction')

#adjust the axes
ax[0, 0].set_ylim([0, 0.00032])
ax[0, 1].set_ylim([0, 0.0035])
ax[1, 1].set_xlim([375, 1200])

plt.tight_layout()

Resulting plot looks like this:

6.1. Comprehensive Walkthrough 23

rampedpyrox Documentation, Release 0.1.2

Predicting thermograms for other time-temperature histories

One feature of the rampedpyrox package is the ability to forward-model degradation rates for any arbitrary time-
temperature history once the estimated p:sub: 0(E) distribution has been determined. This allows users the ability
to:

• Quickly analyze a small amount of sample with a fast ramp rate in order to estimate p:sub: 0(E), then forward-
model the thermogram for a typical ramp rate of 5K/min in order to determine the best times to toggle gas
collection fractions.

– This feature could allow for future development of an automated Ramped PyrOx system.

• Manipulate oven ramp rates and temperature programs in an similar way to a gas chromatograph (GC) in order
to separate co-eluting components, mimic real-world environmental heating rates, etc.

• Predict petroleum maturation and evolved gas isotope composition over geologic timescales8.

8 See Dieckmann (2005) Marine and Petroleum Geology, 22, 375-390 and Dieckmann et al. (2006) Marine and Petroleum Gelogoy, 23, 183-199

24 Chapter 6. Table of contents

rampedpyrox Documentation, Release 0.1.2

Here, I will use the above-created p:sub: 0(E) energy complex to generate a new DAEM with a ramp rate of 15K/min
up to 950K, then hold at 950K:

#import modules
import numpy as np

#extract the Ee array from the energy complex
E = ec.E

#make an array of 350 points going from 0 to 5000 seconds
t = np.linspace(0, 5000, 350)

#calculate the temperature at each timepoint, starting at 373K
T = 373 + (15./60)*t

ind = np.where(T > 950)
T[ind] = 950

#use the same log10k0 value as before
log10k0 = 10

#make the new model
daem_fast = rp.Daem(

E,
log10k0,
t,
T)

#make a new thermogram instance by inputting the time
and temperature arrays. This "sets up" the thermogram
for forward modeling
tg_fast = rp.RpoThermogram(t, T)

#forward-model the energy complex onto the new thermogram
tg_fast.forward_model(daem_fast, ec)

Note: Because a portion of this time-temperature history is isothermal, this calculation will inevitably divide by 0
while calculating some metrics. As a result, it will generate some warnings and will fail to calculate an average decay
temperature. Results plotted against time are still valid and robust.

The tg_fast thermogram now contains modeled data and can be plotted:

#import additional modules
import matplotlib.gridspec as gridspec

#make a figure
gs = gridspec.GridSpec(2, 2, height_ratios=[4,1])

ax1 = plt.subplot(gs[0,0])

ax2 = plt.subplot(gs[0,1])

ax3 = plt.subplot(gs[1,:])

#plot results
ax1 = tg_fast.plot(

for a discussion on the limitations of predicting organic carbon maturation over geologic timescales using laboratory experiments.

6.1. Comprehensive Walkthrough 25

rampedpyrox Documentation, Release 0.1.2

ax = ax1,
xaxis = 'time',
yaxis = 'rate')

ax2 = tg_fast.plot(
ax = ax2,
xaxis = 'time',
yaxis = 'fraction')

#plot time-temperature history
ax3.plot(

tg_fast.t,
tg_fast.T,
linewidth = 2,
color = 'k')

#set labels
ax3.set_xlabel('time (s)')
ax3.set_ylabel('Temp. (K)')

#adjust the axes
ax1.set_ylim([0, 0.0008])
ax3.set_yticks([300, 500, 700, 900, 1100])

plt.tight_layout()

Which generates a plot like this:

26 Chapter 6. Table of contents

rampedpyrox Documentation, Release 0.1.2

Importing and correcting isotope values

At this point, the thermogram, DAEM model, and p:sub: 0(E) distribution have all been created. Now, the next
step is to import the RPO isotope values and to calculate the distribution of E values corresponding to each RPO
fraction. This is This is done by creating an rp.RpoIsotopes instance using the from_csvmethod. If the sample
was run on the NOSAMS Ramped PyrOx instrument, setting blank_corr = True and an appropriate value for
mass_rerr will automatically blank-correct values according to the blank carbon estimation of Hemingway et al.
(2017)910. Additionally, if 13C isotope composition was measured, these can be further corrected for any mass-balance
discrepancies and for kinetic isotope fractionation within the RPO instrument59.

Here I create an rp.RpoIsotopes instance and input the measured data:

ri = rp.RpoIsotopes.from_csv(
iso_data,
daem,
ec,
blk_corr = True,
bulk_d13C_true = [-25.0, 0.1], #independently measured true mean, std.

9 Hemingway et al., (2017), Radiocarbon, determine the blank carbon flux and isotope composition for the NOSAMS instrument. Additionaly,
this manuscript estimates that a DE value of 0.3 - 1.8 J/mol best explains the NOSAMS Ramped PyrOx stable-carbon isotope KIE.

10 Blank composition calculated for other Ramped PyrOx instuments can be inputted by changing the default blk_d13C, blk_flux, and
blk_Fm parameters.

6.1. Comprehensive Walkthrough 27

rampedpyrox Documentation, Release 0.1.2

mass_err = 0.01, #1 percent uncertainty in mass
DE = 0.0018) #1.8 J/mol for KIE

While creating the RpoIsotopes instance and correcting isotope composition, this additionally calculated the distribu-
tion of E values contained within each RPO fraction. That is, carbon described by this distribution will decompose
over the inputted temperature ranges and will result in the trapped CO2for each fraction5. These distributions can now
be compared with measured isotopes in order to determine the relationship between isotope composition and reaction
energetics.

A summary table can be printed or saved to .csv according to:

#print to terminal
print(ri.ri_corr_info)

#save to .csv file
ri.ri_corr_info.to_csv('file_to_save.csv')

Note: This displays the fractionation, mass-balance, and KIE corrected isotope values. To view raw (inputted) values,
use ri_raw_info instead.

This will result in a table similar to:

t0
(s)

tf (s) E
(kJ/mol)

E_std mass
(ugC)

mass_std d13C
(VPDB)

d13C_std Fm Fm_std

1 754 2724 134.12 8.83 68.32 0.70 -29.40 0.15 0.89 3.55e-
3

2 2724 3420 148.01 6.96 105.55 1.06 -27.99 0.15 0.80 2.21e-
3

3 3420 3966 158.84 7.47 82.42 0.83 -26.76 0.15 0.68 2.81e-
3

4 3966 4718 173.13 8.55 92.56 0.93 -25.14 0.15 0.46 3.21e-
3

5 4718 5553 190.67 10.82 85.56 0.86 -25.33 0.15 0.34 2.82e-
3

6 5553 6328 209.20 10.59 98.43 0.98 -24.29 0.15 0.11 2.22e-
3

7 6328 6940 222.90 8.12 101.50 1.01 -22.87 0.15 0.02 1.91e-
3

8 6940 7714 231.30 7.13 125.57 1.26 -21.88 0.15 0.01 1.81e-
3

9 7714 11028 260.63 17.77 86.55 0.90 -23.57 0.16 0.04 2.42e-
3

Additionally, the E distributions contained within each RPO fraction can be plotted along with isotope vs. E cross
plots. Here, I’ll plot the distributions and cross plots for both 13C and 14C (corrected). Lastly, I’ll plot using the raw
(uncorrected) 13C values as a comparison:

#make a figure
fig, ax = plt.subplots(2, 2,

figsize = (8,8),
sharex = True)

#plot results
ax[0, 0] = ri.plot(

ax = ax[0, 0],
plt_var = 'p0E')

28 Chapter 6. Table of contents

rampedpyrox Documentation, Release 0.1.2

ax[0, 1] = ri.plot(
ax = ax[0, 1],
plt_var = 'd13C',
plt_corr = True)

ax[1, 0] = ri.plot(
ax = ax[1, 0],
plt_var = 'Fm',
plt_corr = True)

ax[1, 1] = ri.plot(
ax = ax[1, 1],
plt_var = 'd13C',
plt_corr = False) #plotting raw values

#adjust the axes
ax[0,0].set_xlim([100,300])
ax[0,1].set_ylim([-30,-21])
ax[1,1].set_ylim([-30,-21])

plt.tight_layout()

Which generates a plot like this:

6.1. Comprehensive Walkthrough 29

rampedpyrox Documentation, Release 0.1.2

Additional Notes on the Kinetic Isotope Effect (KIE)

While the KIE has no effect on Fm values since they are fractionation-corrected by definition11, mass-dependent
kinetic fractionation effects must be explicitly accounted for when estimating the source carbon stable isotope com-
position during any kinetic experiment. For example, the KIE can lead to large isotope fractionation during thermal
generation of methane and natural gas over geologic timescales8 or during photodegradation of organic carbon by uv
light [15]_.

As such, the rampedpyrox package allows for direct input of DE values [DE = E(13C) - E(12C), in kJ/mol] when
correcting Ramped PyrOx isotopes. However, the magnitude of this effect is likely minimal within the NOSAMS
Ramped PyrOx instrument – Hemingway et al. (2017) determined a best-fit value of 0.3e-3 - 1.8e-3 kJ/mol for a suite
of standard reference materials9 – and will therefore lead to small isotope corrections for samples analyzed on this
instrument (i.e. << 1 per mille)

11 See Stuiver and Polach (1977), Radiocarbon, 19(3), 355-363 for radiocarbon notation and data treatment.

30 Chapter 6. Table of contents

rampedpyrox Documentation, Release 0.1.2

Notes and References

Package Reference Documentation

The following classes and methods form the rampedpyrox package:

Ramped PyrOx classes

rampedpyrox.RpoThermogram(t, T[, g]) Class for inputting and storing Ramped PyrOx true (ob-
served) and estimated (forward-modelled) thermograms,
calculating goodness of fit statistics, and reporting sum-
mary tables.

rampedpyrox.Daem(E, log10k0, t, T) Class to calculate the DAEM model transform.
rampedpyrox.EnergyComplex(E[, p]) Class for inputting and storing Ramped PryOx activation

energy distributions.
rampedpyrox.RpoIsotopes(model, ratedata, t_frac) Class for inputting Ramped PyrOx isotopes, calculating

p0(E) contained in each RPO fraction, correcting isotope
values for blank contribution, mass balance, and kinetic
fractionation (d13C only), and storing resulting data and
statistics.

rampedpyrox.RpoThermogram

class rampedpyrox.RpoThermogram(t, T, g=None)
Class for inputting and storing Ramped PyrOx true (observed) and estimated (forward-modelled) thermograms,
calculating goodness of fit statistics, and reporting summary tables.

Parameters

• t (array-like) – Array of time, in seconds. Length nt.

• T (array-like) – Array of temperature, in Kelvin. Length nt.

• g (None or array-like) – Array of the true fraction of carbon remaining at each
timepoint, with length nt. Defaults to None.

Warning:

UserWarning If attempting to use isothermal data to create an rp.RpoThermogram instance. Consider
using an alternate rp.TimeData subclass (to be added in future versions).

Notes

Important: The inverse model used herein is highly sensitive to boundary effects. To avoid unnecessarily large
regularizations ensure that inputted data are completely at baseline (ppm CO2 = 0) at the beginning and the end
of the experiment (can use the bl_subtract flag to enforce that this is true.)

See also:

Daem rp.Model subclass used to generate the distributed activation energy model (DAEM)transform matrix
for RPO data and translate between time- and E-space.

6.2. Package Reference Documentation 31

https://docs.python.org/2/library/constants.html#None

rampedpyrox Documentation, Release 0.1.2

EnergyComplex rp.RateData subclass for storing and analyzing RPO energy (rate) data.

Examples

Generating an arbitrary bare-bones thermogram containing only t and T:

#import modules
import numpy as np
import rampedpyrox as rp

#generate arbitrary data
t = np.arange(1,100) #100 second experiment
beta = 0.5 #K/second
T = beta*t + 273.15 #K

#create instance
tg = rp.RpoThermogram(t,T)

Generating a real thermogram using an RPO output .csv file and the rp.RpoThermogram.from_csv class
method, and subtracting the baseline:

#import modules
import rampedpyrox as rp

#create path to data file
file = 'path_to_folder_containing_data/thermogram_data.csv'

#create instance using baseline-subtracted CO2 data
tg = rp.RpoThermogram.from_csv(

file,
bl_subtract = True,
nt = 250) #number of down-sampled time points

Manually adding some model-estimated fraction remaining data as ghat:

#assuming ghat has been generating using a ``rp.Daem`` model
tg.input_estimated(ghat)

Or, instead, you can input model-estimated g data directly from a given rp.Daem and rp.EnergyComplex
instance (i.e. run the forward model):

#assuming ``rp.Daem`` named daem and ``rp.EnergyComplex`` named ec
tg.forward_model(daem, ec)

Plotting the resulting observed and modelled thermograms (note scatter when plotted against temp due to short
fluctuations in measured ramp rate. For a “smooth” plot, always plot against time, as this is the master variable.):

#import additional modules
import matplotlib.pyplot as plt

#create figure
fig, ax = plt.subplots(1,2)

#plot resulting rates against time and temp
ax[0] = tg.plot(

ax = ax[0],
xaxis = 'time',

32 Chapter 6. Table of contents

rampedpyrox Documentation, Release 0.1.2

yaxis = 'rate')

ax[1] = tg.plot(
ax = ax[1],
xaxis = 'temp',
yaxis = 'rate')

Printing a summary of the observed and modelled thermograms:

print(tg.tg_info)
print(tg.tghat_info)

Attributes

dghatdt [numpy.ndarray] Array of the derivative of the estimated fraction of carbon remaining with respect to
time at each timepoint, in fraction/second. Length nt.

dghatdT [numpy.ndarray] Array of the derivative of the estimated fraction of carbon remaining with respect to
temperature at each timepoint, in fraction/Kelvin. Length nt.

dgdt [numpy.ndarray] Array of the derivative of the true fraction of carbon remaining with respect to time at
each timepoint, in fraction/second. Length nt.

dgdT [numpy.ndarray] Array of the derivative of the true fraction of carbon remaining with respect to temper-
ature at each timepoint, in fraction/Kelvin. Length nt.

dTdt [numpy.ndarray] Array of the derivative of temperature with respect to time (i.e. the instantaneous ramp
rate) at each timepoint, in Kelvin/second. Length nt.

g [numpy.ndarray] Array of the true fraction of carbon remaining at each timepoint. Length nt.

ghat [numpy.ndarray] Array of the estimated fraction of carbon remaining at each timepoint. Length nt.

nt [int] Number of timepoints.

resid [float] The residual root mean square error (RMSE) between observed and modelled thermograms, g and
ghat.

t [numpy.ndarray] Array of timepoints, in seconds. Length nt.

T [numpy.ndarray] Array of temperature, in Kelvin. Length nt.

tg_info [pd.Series] Series containing the observed thermogram summary info:

t_max (s),

t_mean (s),

t_std (s),

T_max (K),

T_mean (K),

T_std (K),

max_rate (frac/s),

max_rate (frac/K),

tghat_info [pd.Series] Series containing the modelled thermogram summary info:

t_max (s),

t_mean (s),

6.2. Package Reference Documentation 33

rampedpyrox Documentation, Release 0.1.2

t_std (s),

T_max (K),

T_mean (K),

T_std (K),

max_rate (frac/s),

max_rate (frac/K),

Methods

forward_model(model, ratedata) Forward-models rate data for a given model and popu-
lates the thermogram with model-estimated data.

from_csv(file[, bl_subtract, nt]) Class method to directly import RPO data from a
.csv file and create an rp.RpoThermogram class in-
stance.

input_estimated(ghat) Inputs estimated thermogram into the rp.
RpoThermogram instance and calculates statistics.

plot([ax, xaxis, yaxis]) Plots the true and model-estimated thermograms against
time or temp.

rampedpyrox.RpoThermogram.forward_model

RpoThermogram.forward_model(model, ratedata)
Forward-models rate data for a given model and populates the thermogram with model-estimated data.

Parameters

• model (rp.Model) – The rp.Daem instance used to calculate the forward model.

• ratedata (rp.RateData) – The rp.EnergyComplex instance containing the re-
active continuum data.

Warning:

UserWarning If using an an isothermal model type for an RPO run.

UserWarning If using a non-energy complex ratedata type for an RPO run.

Raises

• ArrayError – If nE is not the same in the rp.Model instance and the rp.RateData
instance.

• ArrayError – If nt is not the same in the rp.Model instance and the rp.TimeData
instance.

• ArrayError – If the rp.RateData instance has no attribute p.

See also:

input_estimated() Method used for inputting model-estimated data directly.

34 Chapter 6. Table of contents

rampedpyrox Documentation, Release 0.1.2

EnergyComplex.inverse_model Class for creating an rp.EnergyComplex instance and calculating
the inverse model.

rampedpyrox.RpoThermogram.from_csv

classmethod RpoThermogram.from_csv(file, bl_subtract=True, nt=250)
Class method to directly import RPO data from a .csv file and create an rp.RpoThermogram class
instance.

Parameters

• file (str or pd.DataFrame) – File containing isotope data, either as a path string
or a dataframe.

• bl_subtract (Boolean) – Tells the program whether or not to linearly subtract the
baseline such that ppmCO2 returns to 0 at the beginning and end of the run. Defaults to
True. To minimize boundary effects, this should typically be set to ‘True‘ regardless
of previous data treatment.

• nt (int) – The number of time points to use. Defaults to 250.

Notes

If using the all_data file generated by the NOSAMS RPO LabView program, the date_time column must
be converted to hh:mm:ss AM/PM format and a header row should be added with the following columns:

date_time,

T_room,

P_room,

CO2_raw,

corr_int,

corr_slope,

temp,

CO2_scaled,

flow_rate,

dTdt,

fraction,

ug_frac,

ug_sum

(Note that all columns besides date_time, temp, and CO2_scaled are unused.) Ensure that all rows before
the start of temperature ramping and after the ovens have been turned off have been removed.

When down-sampling, t contains the midpoints of each time bin and g and T contain the corresponding
temp. and fraction remaining at each midpoint.

See also:

RpoIsotopes.from_csv() Classmethod for creating rp.RpoIsotopes instance directly from a
.csv file.

6.2. Package Reference Documentation 35

https://docs.python.org/2/library/functions.html#str
https://docs.python.org/2/library/functions.html#int

rampedpyrox Documentation, Release 0.1.2

rampedpyrox.RpoThermogram.input_estimated

RpoThermogram.input_estimated(ghat)
Inputs estimated thermogram into the rp.RpoThermogram instance and calculates statistics.

Parameters ghat (array-like) – Array of estimated fraction of total carbon remaining at
each timestep. Length nt.

See also:

forward_model() Method for directly inputting estimated data from a given model and ratedata.

rampedpyrox.RpoThermogram.plot

RpoThermogram.plot(ax=None, xaxis=’time’, yaxis=’rate’)
Plots the true and model-estimated thermograms against time or temp.

Parameters

• ax (None or matplotlib.axis) – Axis to plot on. If None, automatically creates
a matplotlip.axis instance to return. Defaults to None.

• xaxis (str) – Sets the x axis unit, either ‘time’ or ‘temp’. Defaults to ‘time’.

• yaxis (str) – Sets the y axis unit, either ‘fraction’ or ‘rate’. Defaults to ‘rate’.

Returns ax – Updated axis instance with plotted data.

Return type matplotlib.axis

Raises

• StringError – If xaxis is not ‘time’ or ‘temp’.

• StringError – if yaxis is not ‘fraction’ or ‘rate’.

rampedpyrox.Daem

class rampedpyrox.Daem(E, log10k0, t, T)
Class to calculate the DAEM model transform. Used for ramped-temperature kinetic problems such as Ramped
PyrOx, pyGC, TGA, etc.

Parameters

• E (array-like) – Array of E values, in kJ/mol. Length nE.

• log10k0 (scalar, array-like, or lambda function) – Arrhenius pre-
exponential factor, either a constant value, array-like with length nE, or a lambda function
of E (in kJ).

• t (array-like) – Array of time, in seconds. Length nt.

• T (array-like) – Array of temperature, in Kelvin. Length nt.

Warning:

UserWarning If attempting to use isothermal data to create a Daem model instance.

See also:

36 Chapter 6. Table of contents

https://docs.python.org/2/library/constants.html#None
https://docs.python.org/2/library/functions.html#str
https://docs.python.org/2/library/functions.html#str

rampedpyrox Documentation, Release 0.1.2

RpoThermogram rp.TimeData subclass for storing and analyzing RPO time/temperature data.

EnergyComplex rp.RateData subclass for storing and analyzing RPO rate data.

Examples

Creating a DAEM using manually-inputted E, k0, t, and T:

#import modules
import numpy as np
import rampedpyrox as rp

#generate arbitrary data
t = np.arange(1,100) #100 second experiment
beta = 0.5 #K/second
T = beta*t + 273.15 #K

E = np.arange(50, 350) #kJ/mol
log10k0 = 10 #s-1

#create instance
daem = rp.Daem(E, log10k0, t, T)

Creating a DAEM from real thermogram data using the rp.Daem.from_timedata class method:

#import modules
import rampedpyrox as rp

#create thermogram instance
tg = rp.RpoThermogram.from_csv('some_data_file.csv')

#create Daem instance
daem = rp.Daem.from_timedata(

tg,
E_max = 350,
E_min = 50,
nE = 250,
log10k0 = 10)

Creating a DAEM from an energy complex using the rp.Daem.from_ratedata class method:

#import modules
import rampedpyrox as rp

#create energycomplex instance
ec = rp.EnergyComplex(E, p0E)

#create Daem instance
daem = rp.Daem.from_ratedata(

ec,
beta = 0.08,
log10k0 = 10,
nt = 250,
t0 = 0,
T0 = 373,
tf = 1e4)

Plotting the L-curve of a Daem to find the best-fit omega value:

6.2. Package Reference Documentation 37

rampedpyrox Documentation, Release 0.1.2

#import modules
import matplotlib.pyplot as plt

#create figure
fig, ax = plt.subplots(1,1)

#plot L curve
om_best, ax = daem.calc_L_curve(

tg,
ax = None,
plot = True,
om_min = 1e-3,
om_max = 1e2,
nOm = 150)

Attributes

A : np.ndarray

E [np.ndarray] Array of E values, in kJ/mol. Length nE.

nE [int] Number of activation energy points.

nt [int] Number of timepoints.

t [np.ndarray] Array of timepoints, in seconds. Length nt.

T [np.ndarray] Array of temperature, in Kelvin. Length nt.

References

[1] R.L Braun and A.K. Burnham (1987) Analysis of chemical reaction kinetics using a distribution of ac-
tivation energies and simpler models. Energy & Fuels, 1, 153-161.

[2] B. Cramer et al. (1998) Modeling isotope fractionation during primary cracking of natural gas: A re-
action kinetic approach. Chemical Geology, 149, 235-250.

[3] V. Dieckmann (2005) Modeling petroleum formation from heterogeneous source rocks: The influence
of frequency factors on activation energy distribution and geological prediction. Marine and Petroleum
Geology, 22, 375-390.

[4] D.C. Forney and D.H. Rothman (2012) Common structure in the heterogeneity of plant-matter decay.
Journal of the Royal Society Interface, rsif.2012.0122.

[5] D.C. Forney and D.H. Rothman (2012) Inverse method for calculating respiration rates from decay
time series. Biogeosciences, 9, 3601-3612.

[6] P.C. Hansen (1987) Rank-deficient and discrete ill-posed problems: Numerical aspects of linear inver-
sion (monographs on mathematical modeling and computation). Society for Industrial and Applied Math-
ematics.

[7] P.C. Hansen (1994) Regularization tools: A Matlab package for analysis and solution of discrete ill-
posed problems. Numerical Algorithms, 6, 1-35.

[8] C.C. Lakshmananan et al. (1991) Implications of multiplicity in kinetic parameters to petroleum explo-
ration: Distributed activation energy models. Energy & Fuels, 5, 110-117.

[9] J.E. White et al. (2011) Biomass pyrolysis kinetics: A comparative critical review with relevant agricul-
tural residue case studies. Journal of Analytical and Applied Pyrolysis, 91, 1-33.

38 Chapter 6. Table of contents

rampedpyrox Documentation, Release 0.1.2

Methods

calc_L_curve(timedata[, ax, nOm, om_max, ...]) Function to calculate the L-curve for a given model and
timedata instance in order to choose the best-fit smooth-
ing parameter, omega.

from_ratedata(ratedata[, beta, log10k0, nt, ...]) Class method to directly generate an rp.Daem instance
using data stored in an rp.RateData instance.

from_timedata(timedata[, E_max, E_min, ...]) Class method to directly generate an rp.Daem instance
using data stored in an rp.TimeData instance.

rampedpyrox.Daem.calc_L_curve

Daem.calc_L_curve(timedata, ax=None, nOm=150, om_max=100.0, om_min=0.001, plot=False)
Function to calculate the L-curve for a given model and timedata instance in order to choose the best-fit
smoothing parameter, omega.

Parameters

• timedata (rp.TimeData) – rp.TimeData instance containing the time and frac-
tion remaining arrays to use in L curve calculation.

• ax (None or matplotlib.axis) – Axis to plot on. If None and plot = True,
automatically creates a matplotlip.axis instance to return. Defaults to None.

• nOm (int) – Number of omega values to consider. Defaults to 150.

• om_max (float or int) – Maximum omega value to search. Defaults to 1e2.

• om_min (float or int) – Minimum omega value to search. Defaults to 1e-3.

• plot (Boolean) – Tells the method to plot the resulting L curve or not. Defaults to
False.

Returns

• om_best (float) – The calculated best-fit omega value.

• axis (None or matplotlib.axis) – If plot = True, returns an updated axis handle with
plot.

Raises

• ScalarError – If om_max or om_min are not scalar.

• ScalarError – If nOm is not int.

See also:

calc_L_curve() Package-level method for calc_L_curve.

References

[1] D.C. Forney and D.H. Rothman (2012) Inverse method for calculating respiration rates from de-
cay time series. Biogeosciences, 9, 3601-3612.

[2] P.C. Hansen (1987) Rank-deficient and discrete ill-posed problems: Numerical aspects of linear
inversion (monographs on mathematical modeling and computation). Society for Industrial and Ap-
plied Mathematics.

6.2. Package Reference Documentation 39

https://docs.python.org/2/library/constants.html#None
https://docs.python.org/2/library/functions.html#int
https://docs.python.org/2/library/functions.html#float
https://docs.python.org/2/library/functions.html#int
https://docs.python.org/2/library/functions.html#float
https://docs.python.org/2/library/functions.html#int

rampedpyrox Documentation, Release 0.1.2

[3] P.C. Hansen (1994) Regularization tools: A Matlab package for analysis and solution of discrete
ill-posed problems. Numerical* Algorithms*, **6, 1-35.

rampedpyrox.Daem.from_ratedata

classmethod Daem.from_ratedata(ratedata, beta=0.08, log10k0=10, nt=250, t0=0, T0=373,
tf=10000.0)

Class method to directly generate an rp.Daem instance using data stored in an rp.RateData instance.

Parameters

• ratedata (rp.RateData) – rp.RateData instance containing the E array to use
for creating the DAEM.

• beta (int or float) – Temperature ramp rate to use in model, in Kelvin/second.
Defaults to 0.08 (i.e. 5K/min)

• log10k0 (scalar, array-like, or lambda function) – Arrhenius pre-
exponential factor, either a constant value, array- likewith length nE, or a lambda function
of E. Defaults to 10.

• nt (int) – The number of time points to use. Defaults to 250.

• t0 (int or float) – The initial time to be used in the model, in seconds. Defaults to
0.

• T0 (int or float) – The initial temperature to be used in the model, in Kelvin. De-
faults to 373.

• tf (int or float) – The final time to be used in the model, in seconds. Defaults to
10,000.

Warning:

UserWarning If attempting to create a DAEM with a non-EnergyComplex ratedata instance.

See also:

from_timedata() Class method to directly generate an rp.Daem instance using data stored in an
rp.TimeData instance.

rampedpyrox.Daem.from_timedata

classmethod Daem.from_timedata(timedata, E_max=350, E_min=50, log10k0=10, nE=250)
Class method to directly generate an rp.Daem instance using data stored in an rp.TimeData instance.

Parameters

• timedata (rp.TimeData) – rp.TimeData instance containing the time array to
use for creating the DAEM.

• E_max (int) – The maximum activation energy value to consider, in kJ/mol. Defaults to
350.

• E_min (int) – The minimum activation energy value to consider, in kJ/mol. Defaults to
50.

40 Chapter 6. Table of contents

https://docs.python.org/2/library/functions.html#int
https://docs.python.org/2/library/functions.html#float
https://docs.python.org/2/library/functions.html#int
https://docs.python.org/2/library/functions.html#int
https://docs.python.org/2/library/functions.html#float
https://docs.python.org/2/library/functions.html#int
https://docs.python.org/2/library/functions.html#float
https://docs.python.org/2/library/functions.html#int
https://docs.python.org/2/library/functions.html#float
https://docs.python.org/2/library/functions.html#int
https://docs.python.org/2/library/functions.html#int

rampedpyrox Documentation, Release 0.1.2

• log10k0 (scalar, array-like, or lambda function) – Arrhenius pre-
exponential factor, either a constant value, array- likewith length nE, or a lambda function
of E. Defaults to 10.

• nE (int) – The number of activation energy points. Defaults to 250.

Warning:

UserWarning If attempting to create a DAEM with an isothermal timedata instance.

See also:

from_ratedata() Class method to directly generate an rp.Daem instance using data stored in an
rp.RateData instance.

rampedpyrox.EnergyComplex

class rampedpyrox.EnergyComplex(E, p=None)
Class for inputting and storing Ramped PryOx activation energy distributions.

Parameters

• E (array-like) – Array of activation energy, in kJ/mol. Length nE.

• p (None or array-like) – Array of the regularized pdf of the E distribution, p0E.
Length nE. Defaults to None.

Raises ArrayError – If the any value in E is negative.

See also:

Daem rp.Model subclass used to generate the Laplace transform for RPO data and translate between time-
and E-space.

RpoThermogram rp.TimeData subclass containing the time and fraction remaining data used for the in-
version.

Examples

Generating a bare-bones energy complex containing only E and p:

#import modules
import rampedpyrox as rp
import numpy as np

#generate arbitrary Gaussian data
E = np.arange(50, 350)

def Gaussian(x, mu, sig):
scalar = (1/np.sqrt(2*np.pi*sig**2))*
y = scalar*np.exp(-(x-mu)**2/(2*sig**2))
return y

p = Gaussian(E, 150, 10)

6.2. Package Reference Documentation 41

https://docs.python.org/2/library/functions.html#int
https://docs.python.org/2/library/constants.html#None

rampedpyrox Documentation, Release 0.1.2

#create the instance
ec = rp.EnergyComplex(E, p = p)

Or, insteand run the inversion to generate an energy complex using an rp.RpoThermogram instance, tg, and
an rp.Daem instance, daem:

#keeping defaults, not combining any peaks
ec = rp.EnergyComplex(

daem,
tg,
omega = 'auto')

Plotting the resulting regularized energy complex:

#import additional modules
import matplotlib.pyplot as plt

#create figure
fig, ax = plt.subplots(1,1)

#plot resulting E pdf, p0E
ax = ec.plot(ax = ax)

Attributes

E [np.ndarray] Array of activation energy, in kJ/mol. Length nE.

nE [int] Number of E points.

ec_info [pd.Series] Series containing the observed EnergyComplex summary info:

E_max (kJ/mol),

E_mean (kJ/mol),

E_std (kJ/mol),

p0(E)_max (unitless)

omega [float] Tikhonov regularization weighting factor.

p [np.ndarray] Array of the pdf of the E distribution, p0E. Length nEa.

resid [float] The RMSE between the measured thermogram data and the estimated thermogram using the p
(ghat). Used for determining the best-fit omega value.

rgh : The roughness RMSE. Used for determining best-fit omega value.

References

[1] B. Cramer (2004) Methane generation from coal during open system pyrolysis investigated by isotope
specific, Gaussian distributed reaction kinetics. Organic Geochemistry, 35, 379-392.

[2] D.C. Forney and D.H. Rothman (2012) Common structure in the heterogeneity of plant-matter decay.
Journal of the Royal Society Interface, rsif.2012.0122.

[3] D.C. Forney and D.H. Rothman (2012) Inverse method for calculating respiration rates from decay
time series. Biogeosciences, 9, 3601-3612.

42 Chapter 6. Table of contents

rampedpyrox Documentation, Release 0.1.2

Methods

input_estimated([omega, resid, rgh]) Inputs estimated rate data into the rp.
EnergyComplex instance and calculates statistics.

inverse_model(model, timedata[, omega]) Generates an energy complex by inverting an rp.
TimeData instance using a given rp.Model in-
stance.

plot([ax]) Plots the pdf of E, p0E, against E.

rampedpyrox.EnergyComplex.input_estimated

EnergyComplex.input_estimated(omega=0, resid=0, rgh=0)
Inputs estimated rate data into the rp.EnergyComplex instance and calculates statistics.

Parameters

• omega (scalar) – Tikhonov regularization weighting factor used to generate estimated
data. Defaults to 0.

• resid (float) – Residual RMSE for the inputted estimated data. Defaults to 0.

• rgh (float) – Roughness RMSE for the inputted estimated data. Defaults to 0.

rampedpyrox.EnergyComplex.inverse_model

classmethod EnergyComplex.inverse_model(model, timedata, omega=’auto’)
Generates an energy complex by inverting an rp.TimeData instance using a given rp.Model instance.

Parameters

• model (rp.Model) – rp.Model instance containing the A matrix to use for inversion.

• timedata (rp.TimeData) – rp.TimeData instance containing the timeseries data
to invert.

• omega (scalar or 'auto') – Smoothing weighting factor for Tikhonov regulariza-
tion. Defaults to ‘auto’.

Warning:

UserWarning If scipy.optimize.least_squares cannot converge on a solution.

UserWarning If attempting to use timedata that is not a rp.RpoThermogram instance.

UserWarning If attempting to use a model that is not a rp.Daem instance.

See also:

RpoThermogram.forward_model() rp.TimeData method for forward-modeling an rp.
RateData instance using a particular model.

6.2. Package Reference Documentation 43

https://docs.python.org/2/library/functions.html#float
https://docs.python.org/2/library/functions.html#float

rampedpyrox Documentation, Release 0.1.2

rampedpyrox.EnergyComplex.plot

EnergyComplex.plot(ax=None)
Plots the pdf of E, p0E, against E.

Keyword Arguments ax (None or matplotlib.axis) – Axis to plot on. If None, auto-
matically creates a matplotlip.axis instance to return. Defaults to None.

Returns ax – Updated axis instance with plotted data.

Return type matplotlib.axis

rampedpyrox.RpoIsotopes

class rampedpyrox.RpoIsotopes(model, ratedata, t_frac, d13C_raw=None, d13C_raw_std=None,
Fm_raw=None, Fm_raw_std=None, m_raw=None,
m_raw_std=None, blk_corr=False, mb_corr=False,
kie_corr=False)

Class for inputting Ramped PyrOx isotopes, calculating p0(E) contained in each RPO fraction, correcting iso-
tope values for blank contribution, mass balance, and kinetic fractionation (d13C only), and storing resulting
data and statistics.

Parameters

• blk_corr (boolean) – Boolean to determine if inputted isotope data have been blank
corrected, defaults to False.

• d13C_raw (None or array-like) – Array of the raw d13C values (VPDB) of each
measured fraction, length nFrac. Defaults to None.

• d13C_raw_std (None or array-like) – The standard deviation of d13C_raw with
length nFrac. Defaults to zeros or None if d13C_raw is None.

• Fm_raw (None or array-like) – Array of the raw Fm values of each measured frac-
tion, length nFrac. Defaults to None.

• Fm_raw_std (None or array-like) – The standard deviation of Fm_raw with
length nFrac. Defaults to zeros or None if Fm_raw is None.

• kie_corr (boolean) – Boolean to determine if inputted d13C data have been fractiona-
tion corrected, defaults to False.

• m_raw (None or array-like) – Array of the raw masses (ugC) of each measured
fraction, length nFrac. Defaults to None.

• m_raw_std (None or array-like) – The standard deviation of d13C_raw with
length nFrac. Defaults to zero or None if m_raw is None.

• mb_corr (boolean) – Boolean to determine if inputted d13C data have been mass-
balance corrected, defaults to False.

• model (rp.Daem) – rp.Daem instance associated with the inputted energy complex,
used for calculating the fractional E distributions and for KIE d13C correction.

• ratedata (rp.EnergyComplex) – rp.EnergyComplex instance containing p0(E)
distribution for the thermogram associated with inputted isotopes. Used for calculating the
fractional E distributions and for KIE d13C correction.

• t_frac (None or array-like) – 2d array of the initial and final times of each frac-
tion, in seconds. Shape [nFrac x 2]. Defaults to None.

44 Chapter 6. Table of contents

https://docs.python.org/2/library/constants.html#None
https://docs.python.org/2/library/constants.html#None
https://docs.python.org/2/library/constants.html#None
https://docs.python.org/2/library/constants.html#None
https://docs.python.org/2/library/constants.html#None
https://docs.python.org/2/library/constants.html#None
https://docs.python.org/2/library/constants.html#None
https://docs.python.org/2/library/constants.html#None

rampedpyrox Documentation, Release 0.1.2

Warning:

UserWarning If using an an isothermal model type for an RPO run.

UserWarning If using a non-energy complex ratedata type for an RPO run.

Raises

• ArrayError – If t_frac is not array-like.

• ArrayError – If nE is not the same in the rp.Model instance and the rp.RateData
instance.

Notes

When inputting t_frac, a time of 0 (i.e. t0, the initial time) is defined as the first timepoint in the
RpoThermogram instance. If time passed between the thermogram t0 and the beginning of fraction 1 trapping
(as is almost always the case), t_frac must be adjusted accordingly. This is done automatically when importing
from .csv (see RpoIsotopes.from_csv) documenatation for info.

See also:

Daem Model subclass used to generate the transform for RPO data and translate between time- and E-space.

EnergyComplex RateData subclass for storing and analyzing RPO rate data.

RpoThermogram TimeData subclass containing the time and fraction remaining data used for the inversion.

Examples

Generating a bare-bones isotope result instance containing only arbitrary time and Fm data for a given energy
complex instance, ec, and a given model instance, Daem:

#import modules
import rampedpyrox as rp
import numpy as np

#generate arbitrary data for 3 fractions
t_frac = [[100, 200], [200, 300], [300, 1000]]
t_frac = np.array(t_frac)

Fm_raw = [1.0, 0.5, 0.0]

#create instance
ri = rp.RpoIsotopes(

daem,
ec,
t_frac,
Fm_raw = Fm_raw)

Generating a isotope result instance using an RPO output .csv file and the RpoIsotopes.from_csv class
method:

#import modules
import rampedpyrox as rp

6.2. Package Reference Documentation 45

rampedpyrox Documentation, Release 0.1.2

#create path to data file
file = 'path_to_folder_containing_data/isotope_data.csv'

#create instance
ri = rp.RpoThermogram.from_csv(

file,
model,
ratedata,
blk_corr = True,
mass_err = 0.01,
DE = 0.0018)

This will automatically correct inputted isotopes for the inputted instrument blank carbon contribution using
the blk_corr flag and will assumed a 1 percent uncertainty in mass measurements. Additionally, this will
fractionation-correct d13C data (if they exist) using a KIE DE of 1.8 J/mol. NOTE: See RpoIsotopes.
from_csv documentation for instructions on getting the .csv file in the right format.

Plotting resulting p0(E) contained in each RPO fraction:

#import additional modules
import matplotlib.pyplot as plt

#create figure
fig, ax = plt.subplots(1,3)

#plot p0(E) distributions
ax[0] = ri.plot(

ax = ax[0],
plt_var = 'p0E')

Plotting resulting isotope vs. E scatter plots:

#plot d13C data
ax[1] = ri.plot(

ax = ax[1],
plt_var = 'd13C',
plt_corr = True) #plotting corrected values

#plot Fm data
ax[2] = ri.plot(

ax = ax[2],
plt_var = 'Fm',
plt_corr = True) #plotting corrected values

Printing a summary of the raw and corrected isotope values:

#raw fraction information
print(ri.ri_raw_info)

#corrected fraction information
print(ri.ri_corr_info)

Attributes

d13C_corr [np.ndarray] Array of the d13C values (VPDB) of each measured fraction, corrected for any of:
blank, mass-balance, KIE. Length nFrac.

d13C_corr_std [np.ndarray] The standard deviation of the d13C values (VPDB) of each measured fraction,
corrected for any of: blank, mass-balance, KIE. Length nFrac.

46 Chapter 6. Table of contents

rampedpyrox Documentation, Release 0.1.2

d13C_raw [np.ndarray] Array of the raw d13C values (VPDB) of each measured fraction, length nFrac.

d13C_raw_std [np.ndarray] The standard deviation of d13C_raw with length nFrac.

E_frac [np.ndarray] Array of the mean E value (kJ) contained in each measured fraction as calculated by the
inverse model, length nFrac.

E_frac_std [np.ndarray] The standard deviation of E (kJ) contained in each measured fraction as calculated by
the inverse model, length nFrac.

Fm_corr [np.ndarray] Array of the blank-corrected Fm values of each measured fraction, length nFrac.

Fm_corr_std [np.ndarray] The standard deviation of Fm_corr with length nFrac.

Fm_raw [np.ndarray] Array of the raw Fm values of each measured fraction, length nFrac.

Fm_raw_std [np.ndarray] The standard deviation of Fm_raw with length nFrac.

m_corr [np.ndarray] Array of the blank-corrected masses (ugC) of each measured fraction, length nFrac.

m_corr_std [np.ndarray] The standard deviation of m_corr with length nFrac.

m_raw [np.ndarray] Array of the raw masses (ugC) of each measured fraction, length nFrac.

m_raw_std [np.ndarray] The standard deviation of m_raw with length nFrac.

nFrac [int] The number of measured fractions.

ri_corr_info [pd.DataFrame] Dataframe containing the inputted summary info, using corrected isotopes:

time (init. and final),

E (mean and std.),

mass (mean and std.),

d13C (mean and std.),

Fm (mean and std.)

ri_raw_info [pd.DataFrame] Dataframe containing the inputted summary info, using raw isotopes:

time (init. and final),

E (mean and std.),

mass (mean and std.),

d13C (mean and std.),

Fm (mean and std.)

t_frac [np.ndarray] 2d array of the initial and final times of each fraction, in seconds. Shape [nFrac x 2].

Methods

blank_correct([blk_d13C, blk_flux, blk_Fm, ...]) Method to blank- and mass-balance correct raw isotope
values.

from_csv(file, model, ratedata[, blk_corr, ...]) Class method to directly import RPO fraction data from
a .csv file and create an RpoIsotopes class instance.

kie_correct(model, ratedata[, DE]) Method for further correcting d13C values to account
for kinetic isotope fractionation occurring within the in-
strument.

Continued on next page

6.2. Package Reference Documentation 47

rampedpyrox Documentation, Release 0.1.2

Table 6.5 – continued from previous page
plot([ax, plt_var, plt_corr]) Method for plotting results, either p0(E) distributions

contained within each RPO fraction or isotopes vs.

rampedpyrox.RpoIsotopes.blank_correct

RpoIsotopes.blank_correct(blk_d13C=(-29.0, 0.1), blk_flux=(0.375, 0.0583), blk_Fm=(0.555,
0.042), bulk_d13C_true=None)

Method to blank- and mass-balance correct raw isotope values.

Parameters

• blk_d13C (tuple) – Tuple of the blank d13C composition (VPDB), in the form (mean,
stdev.) to be used of blk_corr = True. Defaults to the NOSAMS RPO blank as
calculated by Hemingway et al., Radiocarbon 2017.

• blk_flux (tuple) – Tuple of the blank flux (ng/s), in the form (mean, stdev.) to be
used of blk_corr = True. Defaults to the NOSAMS RPO blank as calculated by
Hemingway et al., Radiocarbon 2017.

• blk_Fm (tuple) – Tuple of the blank Fm value, in the form (mean, stdev.) to be used of
blk_corr = True. Defaults to the NOSAMS RPO blank as calculated by Hemingway
et al., Radiocarbon 2017.

• bulk_d13C_true (None or array) – True measured d13C value (VPDB) for bulk
material as measured independently (e.g. on a EA-IRMS). If not None, this value is used
to mass-balance-correct d13C values as described in Hemingway et al., Radiocarbon 2017.
If not none, must be inputted in the form [mean, stdev.]

Warning:

UserWarning If already corrected for blank contribution

UserWarning If already corrected for 13C mass balance

References

[1] J.D. Hemingway et al. (2017) Assessing the blank carbon contribution, isotope mass balance, and
kinetic isotope fractionation of the ramped pyrolysis/oxidation instrument at NOSAMS. Radiocarbon

rampedpyrox.RpoIsotopes.from_csv

classmethod RpoIsotopes.from_csv(file, model, ratedata, blk_corr=False, blk_d13C=(-29.0,
0.1), blk_flux=(0.375, 0.0583), blk_Fm=(0.555, 0.042),
bulk_d13C_true=None, DE=0.0018, mass_err=0.01)

Class method to directly import RPO fraction data from a .csv file and create an RpoIsotopes class
instance.

Parameters

• blk_corr (Boolean) – Tells the method whether or not to blank-correct isotope data.
If True, blank-corrects according to inputted blank composition values. If bulk_d13C_true
is not None, further corrects d13C values to ensure isotope mass balance (see Hemingway
et al., Radiocarbon 2017 for details).

48 Chapter 6. Table of contents

https://docs.python.org/2/library/functions.html#tuple
https://docs.python.org/2/library/functions.html#tuple
https://docs.python.org/2/library/functions.html#tuple
https://docs.python.org/2/library/constants.html#None
https://docs.python.org/2/library/array.html#module-array

rampedpyrox Documentation, Release 0.1.2

• blk_d13C (tuple) – Tuple of the blank d13C composition (VPDB), in the form (mean,
stdev.) to be used of blk_corr = True. Defaults to the NOSAMS RPO blank as
calculated by Hemingway et al., Radiocarbon 2017.

• blk_flux (tuple) – Tuple of the blank flux (ng/s), in the form (mean, stdev.) to be
used of blk_corr = True. Defaults to the NOSAMS RPO blank as calculated by
Hemingway et al., Radiocarbon 2017.

• blk_Fm (tuple) – Tuple of the blank Fm value, in the form (mean, stdev.) to be used of
blk_corr = True. Defaults to the NOSAMS RPO blank as calculated by Hemingway
et al., Radiocarbon 2017.

• bulk_d13C_true (None or array) – True measured d13C value (VPDB) for bulk
material as measured independently (e.g. on a EA-IRMS). If not None, this value is used
to mass-balance-correct d13C values as described in Hemingway et al., Radiocarbon 2017.
If not none, must be inputted in the form [mean, stdev.]

• DE (scalar) – Value for the difference in E between 12C- and 13C-containing atoms, in
kJ. Defaults to 0.0018 (the best-fit value calculated in Hemingway et al., 2017).

• file (str or pd.DataFrame) – File containing RPO isotope data, either as a string
pointing to a .csv file or as a pd.DataFrame instance.

• mass_err (float) – Relative uncertainty in mass measurements, typically as a sum
of manometric uncertainty in pressure measurements and uncertainty in vacuum line vol-
umes. Defaults to 0.01 (i.e. 1% relative uncertainty).

• model (rp.Model) – rp.Model instance containing the A matrix to use for inversion.

• ratedata (rp.RateData) – rp.Ratedata instance containing the reactive contin-
uum data.

Notes

For bookkeeping purposes, the first 2 rows must be fractions “-1” and “0”, where the timestamp for fraction
“-1” is the first point in the all_data file used to create the rp.RpoThermogram instance, and the
timestamp for fraction “0” is the t0 for the first fraction.

If mass, d13C, and Fm data exist, column names must be the following:

‘ug_frac’ and ‘ug_frac_std’

‘d13C’ and ‘d13C_std’

‘Fm’ and ‘Fm_std’

See also:

RpoThermogram.from_csv() Classmethod for creating rp.RpoThermogram instance directly
from a .csv file.

References

[1] J.D. Hemingway et al. (2017) Assessing the blank carbon contribution, isotope mass balance, and
kinetic isotope fractionation of the ramped pyrolysis/oxidation instrument at NOSAMS. Radiocarbon

6.2. Package Reference Documentation 49

https://docs.python.org/2/library/functions.html#tuple
https://docs.python.org/2/library/functions.html#tuple
https://docs.python.org/2/library/functions.html#tuple
https://docs.python.org/2/library/constants.html#None
https://docs.python.org/2/library/array.html#module-array
https://docs.python.org/2/library/functions.html#str
https://docs.python.org/2/library/functions.html#float

rampedpyrox Documentation, Release 0.1.2

rampedpyrox.RpoIsotopes.kie_correct

RpoIsotopes.kie_correct(model, ratedata, DE=0.0018)
Method for further correcting d13C values to account for kinetic isotope fractionation occurring within the
instrument.

Parameters

• model (rp.Model) – rp.Model instance containing the A matrix to use for inversion.

• ratedata (rp.RateData) – rp.Ratedata instance containing the reactive contin-
uum data.

• DE (scalar) – Value for the difference in E between 12C- and 13C-containing atoms, in
kJ. Defaults to 0.0018 (the best-fit value calculated in Hemingway et al., 2017).

Warning:

UserWarning If already corrected for kinetic fractionation

References

[1] J.D. Hemingway et al. (2017) Assessing the blank carbon contribution, isotope mass balance, and
kinetic isotope fractionation of the ramped pyrolysis/oxidation instrument at NOSAMS. Radiocarbon

rampedpyrox.RpoIsotopes.plot

RpoIsotopes.plot(ax=None, plt_var=’p0E’, plt_corr=True)
Method for plotting results, either p0(E) distributions contained within each RPO fraction or isotopes vs.
mean E for each RPO fraction.

Parameters

• ax (None or matplotlib.axis) – Axis to plot on. If None, automatically creates
a matplotlip.axis instance to return. Defaults to None.

• plt_var (str) – Tells the method which variable to plot, available options are: ‘p0E’
(for fraction-specific p0(E) distributions), ‘Fm’, and d13C (isotope vs. fraction E scatter
plots).

• plt_corr (str) – If plt_var is ‘Fm’ or ‘d13C’, plt_corr tells the method whether to
plot raw or corrected values (if corrected values exist).

Returns ax – Updated axis instance with plotted data.

Return type matplotlib.axis

Raises

• ArrayError – if plt_corr is True but no corrected data exist.

• StringError – If plt_var is not ‘p0E’, ‘Fm’, or ‘d13C’.

Ramped PyrOx methods

50 Chapter 6. Table of contents

https://docs.python.org/2/library/constants.html#None
https://docs.python.org/2/library/functions.html#str
https://docs.python.org/2/library/functions.html#str

rampedpyrox Documentation, Release 0.1.2

rampedpyrox.assert_len(data, n) Asserts that an array has length n and float datatypes.
rampedpyrox.calc_L_curve(model, timedata[, ...]) Function to calculate the L-curve for a given model and

timedata instance in order to choose the best-fit smoothing
parameter, omega.

rampedpyrox.derivatize(num, denom) Method for derivatizing numerator, num, with respect to
denominator, denom.

rampedpyrox.extract_moments(x, y) Extracts 1st (mean) and 2nd (stdev) moments from a distri-
bution.

rampedpyrox.plot_tg_isotopes(timedata,
result)

Function to plot raw timedata (e.g.

rampedpyrox.assert_len

rampedpyrox.assert_len(data, n)
Asserts that an array has length n and float datatypes.

Parameters

• data (scalar or array-like) – Array to assert has length n. If scalar, generates an
np.ndarray with length n.

• n (int) – Length to assert

Returns array – Updated array, now of class np.ndarray and with length n.

Return type np.ndarray

Raises

• ArrayError – If inputted data not int or array-like (excluding string).

• LengthError – If length of the array is not n.

rampedpyrox.calc_L_curve

rampedpyrox.calc_L_curve(model, timedata, ax=None, plot=False, nOm=150, om_max=100.0,
om_min=0.001)

Function to calculate the L-curve for a given model and timedata instance in order to choose the best-fit smooth-
ing parameter, omega.

Parameters

• model (rp.Model) – rp.Model instance containing the A matrix to use for L curve
calculation.

• timedata (rp.TimeData) – rp.TimeData instance containing the time and fraction
remaining arrays to use in L curve calculation.

Keyword Arguments

• ax (None or matplotlib.axis) – Axis to plot on. If None and plot = True,
automatically creates a matplotlip.axis instance to return. Defaults to None.

• plot (Boolean) – Tells the method to plot the resulting L curve or not.

• om_min (int) – Minimum omega value to search. Defaults to 1e-3.

• om_max (int) – Maximum omega value to search. Defaults to 1e2.

• nOm (int) – Number of omega values to consider. Defaults to 150.

6.2. Package Reference Documentation 51

https://docs.python.org/2/library/functions.html#int
https://docs.python.org/2/library/constants.html#None
https://docs.python.org/2/library/functions.html#int
https://docs.python.org/2/library/functions.html#int
https://docs.python.org/2/library/functions.html#int

rampedpyrox Documentation, Release 0.1.2

Returns

• om_best (float) – The calculated best-fit omega value.

• axis (None or matplotlib.axis) – If plot = True, returns an updated axis handle with
plot.

Raises

• ScalarError – If om_max or om_min are not int or float.

• ScalarError – If nOm is not int.

See also:

Daem.calc_L_curve() Instance method for calc_L_curve.

References

[1] D.C. Forney and D.H. Rothman (2012) Inverse method for calculating respiration rates from decay
time series. Biogeosciences, 9, 3601-3612.

[2] P.C. Hansen (1987) Rank-deficient and discrete ill-posed problems: Numerical aspects of linear inver-
sion (monographs on mathematical modeling and computation). Society for Industrial and Applied Math-
ematics.

[3] P.C. Hansen (1994) Regularization tools: A Matlab package for analysis and solution of discrete ill-
posed problems. Numerical Algorithms, 6, 1-35.

rampedpyrox.derivatize

rampedpyrox.derivatize(num, denom)
Method for derivatizing numerator, num, with respect to denominator, denom.

Parameters

• num (int or array-like) – The numerator of the numerical derivative function.

• denom (array-like) – The denominator of the numerical derivative function. Length n.

Returns derivative – An np.ndarray instance of the derivative. Length n.

Return type rparray

Raises ArrayError – If denom is not array-like.

See also:

numpy.gradient() The method used to calculate derivatives

Notes

This method uses the np.gradient method to calculate derivatives. If denom is a scalar, resulting array
will be all np.inf. If both num and denom are scalars, resulting array will be all np.nan. If either num or
denom are 1d and the other is 2d, derivative will be calculated column-wise. If both are 2d, each column will be
derivatized separately.

52 Chapter 6. Table of contents

https://docs.python.org/2/library/functions.html#int

rampedpyrox Documentation, Release 0.1.2

rampedpyrox.extract_moments

rampedpyrox.extract_moments(x, y)
Extracts 1st (mean) and 2nd (stdev) moments from a distribution.

Parameters

• x (np.ndarray) – Array of x values, length n.

• y (np.ndarray) – Array of y values, length n.

Returns

• mu (float) – First moment of distribution.

• sigma (float) – Second moment of distribution.

rampedpyrox.plot_tg_isotopes

rampedpyrox.plot_tg_isotopes(timedata, result, ax=None, plt_corr=True)
Function to plot raw timedata (e.g. RPO thermogram) and isotope values.

Parameters

• ax (None or matplotlib.axis) – Axis to plot on. If None, automatically creates a
matplotlip.axis instance to return. Defaults to None.

• plt_corr (str) – If plt_var is ‘Fm’ or ‘d13C’, plt_corr tells the method whether to plot
raw or corrected values (if corrected values exist).

• result (rp.Results) – rp.Results instance containing the isotope results to plot.

• timedata (rp.TimeData) –

rp.TimeData instance containing the derivative timedata (e.g. rpo thermogram) to
plot.

Returns ax – Updated axis instance with plotted data.

Return type matplotlib.axis

Warning:

UserWarning If timedata does not contain derivative timedata, dgdt.

UserWarning If result does not contain any of the necessary isotope attributes.

ArrayError if plt_corr is True but no corrected data exist.

ArrayError If result does not contain any of: d13C, Fm.

References

The following references were used during creation of the core rampedpyrox pacakge or provide information
regarding the choice of user-inputted parameters (i.e. logk0, omega, and DE).

[1] R.L Braun and A.K. Burnham (1987) Analysis of chemical reaction kinetics using a distribution of activation
energies and simpler models. Energy & Fuels, 1, 153-161.

6.2. Package Reference Documentation 53

https://docs.python.org/2/library/constants.html#None
https://docs.python.org/2/library/functions.html#str

rampedpyrox Documentation, Release 0.1.2

[2] B. Cramer (2004) Methane generation from coal during open system pyrolysis investigated by isotope specific,
Gaussian distributed reaction kinetics. Organic Geochemistry, 35, 379-392.

[3] B. Cramer et al. (1998) Modeling isotope fractionation during primary cracking of natural gas: A reaction kinetic
approach. Chemical Geology, 149, 235-250.

[4] B. Cramer et al. (2001) Reaction kinetics of stable carbon isotopes in natural gas – Insights from dry, open system
pyrolysis experiments. Energy & Fuels, 15, 517-532.

[5] V. Dieckmann (2005) Modeling petroleum formation from heterogeneous source rocks: The influence of frequency
factors on activation energy distribution and geological prediction. Marine and Petroleum Geology, 22, 375-390.

[6] D.C. Forney and D.H. Rothman (2012) Common structure in the heterogeneity of plant-matter decay. Journal of
the Royal Society Interface, rsif.2012.0122.

[7] D.C. Forney and D.H. Rothman (2012) Inverse method for calculating respiration rates from decay time series.
Biogeosciences, 9, 3601-3612.

[8] P.C. Hansen (1987) Rank-deficient and discrete ill-posed problems: Numerical aspects of linear inversion (mono-
graphs on mathematical modeling and computation). Society for Industrial and Applied Mathematics.

[9] P.C. Hansen (1994) Regularization tools: A Matlab package for analysis and solution of discrete ill-posed problems.
Numerical Algorithms, 6, 1-35.

[10] J.D. Hemingway et al. (2017) Assessing the blank carbon contribution, isotope mass balance, and kinetic isotope
fractionation of the ramped pyrolysis/oxidation instrument at NOSAMS. Radiocarbon, in press.

[11] C.C. Lakshmananan et al. (1991) Implications of multiplicity in kinetic parameters to petroleum exploration:
Distributed activation energy models. Energy & Fuels, 5, 110-117.

[12] Rosenheim et al. (2008) Antarctic sediment chronology by programmed-temperature pyrolysis: Methodology
and data treatment. Geochemistry, Geophysics, Geosystems, 9(4), GC001816.

[13] J.E. White et al. (2011) Biomass pyrolysis kinetics: A comparative critical review with relevant agricultural
residue case studies. Journal of Analytical and Applied Pyrolysis, 91, 1-33.

54 Chapter 6. Table of contents

CHAPTER 7

Indices and tables

• genindex

• search

55

rampedpyrox Documentation, Release 0.1.2

56 Chapter 7. Indices and tables

Index

A
assert_len() (in module rampedpyrox), 51

B
blank_correct() (rampedpyrox.RpoIsotopes method), 48

C
calc_L_curve() (in module rampedpyrox), 51
calc_L_curve() (rampedpyrox.Daem method), 39

D
Daem (class in rampedpyrox), 36
derivatize() (in module rampedpyrox), 52

E
EnergyComplex (class in rampedpyrox), 41
extract_moments() (in module rampedpyrox), 53

F
forward_model() (rampedpyrox.RpoThermogram

method), 34
from_csv() (rampedpyrox.RpoIsotopes class method), 48
from_csv() (rampedpyrox.RpoThermogram class

method), 35
from_ratedata() (rampedpyrox.Daem class method), 40
from_timedata() (rampedpyrox.Daem class method), 40

I
input_estimated() (rampedpyrox.EnergyComplex

method), 43
input_estimated() (rampedpyrox.RpoThermogram

method), 36
inverse_model() (rampedpyrox.EnergyComplex class

method), 43

K
kie_correct() (rampedpyrox.RpoIsotopes method), 50

P
plot() (rampedpyrox.EnergyComplex method), 44
plot() (rampedpyrox.RpoIsotopes method), 50
plot() (rampedpyrox.RpoThermogram method), 36
plot_tg_isotopes() (in module rampedpyrox), 53

R
RpoIsotopes (class in rampedpyrox), 44
RpoThermogram (class in rampedpyrox), 31

57

	Package Information
	Bug Reports
	How to Cite
	Package features
	Future Additions

	License
	Table of contents
	Comprehensive Walkthrough
	Package Reference Documentation

	Indices and tables

